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ABSTRACT

Critical limb ischemia (CLI), the most severe form of peripheral artery disease, is characterized
by pain at rest and non-healing ulcers in the lower extremities. For patients with CLI, where
the extent of atherosclerotic artery occlusion is too severe for surgical bypass or percutaneous
interventions, limb amputation remains the only treatment option. Thus, cell-based therapy to
restore perfusion and promote wound healing in patients with CLI is under intense investiga-
tion. Despite promising preclinical studies in animal models, transplantation of bone marrow
(BM)-derived cell populations in patients with CLI has shown limited benefit preventing limb
amputation. Early trials injected heterogenous mononuclear cells containing a low frequency of
cells with pro-vascular regenerative functions. Most trials transferred autologous cells damaged
by chronic disease that demonstrated poor survival in the ischemic environment and impaired
function conferred by atherosclerotic or diabetic co-morbidities. Finally, recent preclinical stud-
ies suggest optimized blood vessel formation may require paracrine and/or structural contribu-
tions from multiple progenitor cell lineages, angiocrine-secretory myeloid cells derived from
hematopoietic progenitor cells, tubule-forming endothelial cells generated by circulating or
vessel-resident endothelial precursors, and vessel-stabilizing perivascular cells derived from mes-
enchymal stem cells. Understanding how stem cells co-ordinate the myriad of cells and signals
required for stable revascularization remains the key to translating the potential of stem cells
into curative therapies for CLI. Thus, combination delivery of multiple cell types within support-
ive bioengineered matricies may represent a new direction to improve cell therapy strategies
for CLI. STEM CELLS 2017; 00:000–000

SIGNIFICANCE STATEMENT

It remains a challenging era for the clinical development of improved cell therapy strategies for
critical limb ischemia (CLI). For the first time, we have the capacity to generate the cells to
model complete vessel formation from exogenous allocgeneic and or autologous sources using
combinatorial delivery of vessel-forming endothelial precursor cells, with pro-angiogenic hema-
topoietic progenitor cell, and vessel-stabilizing mesenchymal stem cell, within implantable
decellularized matricies in vivo. Unfortunately, the morbidity and mortality from CLI remains
unacceptably high and the need for well-controlled translational studies in this area cannot be
overemphasized. Thus, careful preclinical evaluation of emerging concepts and technologies are
critical for the expedited development of cell therapy trials for CLI.

INTRODUCTION

The human body possesses tremendous capac-
ity to heal itself. Central to all regenerative pro-
cesses are somatic stem cells; rare cells found
within every organ that can replace damaged
cells or deliver signals that coordinate tissue

repair. However, after acute events like heart
attack or stroke, the severity of injury can over-
whelm the regenerative response; or during
chronic diseases such as atherosclerosis or dia-
betes, relentless damage can exhaust the stem
cell pool, leading to diminished regenerative
capacity and progressive organ dysfunction.
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CRITICAL LIMB ISCHEMIA: AN EMERGING EPIDEMIC

Peripheral artery disease (PAD) is characterized by ischemia in
the lower extremities due to narrowing of arteries with athero-
sclerotic plaque accumulation [1]. Presently, PAD affects 8–12
million individuals in North America and >200 million world-
wide. Due to increasing rates of obesity in an aging population,
PAD incidence is predicted to double by 2050 [2]. Critical limb
ischemia (CLI) is the most severe form of PAD and represents
the manifestation of pervasive atherosclerosis attributable to
age, smoking, hypercholesterolemia, and diabetes [3]. The Inter-
Society Consensus for the Management of PAD [4] estimated
that 25% of patients diagnosed with CLI will die within 1 year
and an additional 30% will receive limb amputation. Patients
typically present with a spectrum of symptoms including pain at
rest, non-healing ulcers and tissue necrosis with gangrene [5].
Treatment options for patients are usually limited to surgical
arterial reconstruction, endovascular therapy, or limb amputa-
tion. Surgical revascularization is not recommended in patients
with severe co-morbidity, sepsis/limb gangrene, or in non-
ambulatory individuals [6]. Consequently, the use of experimen-
tal, cell-based therapies has emerged as a last resort to prevent
amputation in patients with no treatment options [7].

In this concise review, we detail the current understanding
of stem cells that mediate angiogenic, vasculogenic, and

arteriogenic processes within ischemic tissues. We summarize
the present status of randomized cell therapy trials (RCT) in
CLI patients with rest pain. We further define the emerging
concept of “stem cell exhaustion” and provide evidence that
autologous cell dysfunction may limit treatment efficacy in
patients with atherosclerotic and diabetic co-morbidities.
Finally, we discuss areas where recent preclinical advance-
ments, such as the delivery of multiple allogeneic progenitor
cell lineages within within bioengineered constructs, can be
used to improve the success of future cell therapy outcomes
in patients with CLI.

STEM AND PROGENITOR CELLS THAT GOVERN VASCULAR

REGENERATION

During tissue development, growth and repair blood vessel
remodeling is governed by distinct but co-operative angiogenic,
vasculogenic, and arteriogenic processes [3, 8]. Angiogenesis,
first described by Folkman in the 1970s [9, 10], is defined as
expansion of the vasculature via formation of new capillary net-
works from pre-existing vessels (Fig. 1A). Angiogenesis includes
two broad processes, sprouting and intussusceptive angiogene-
sis. Sprouting angiogenesis is triggered in tissues with regional
ischemia via the activity of hypoxia inducible factor-1 alpha

Figure 1. Multicellular mechanisms of blood vessel regeneration. (A): Angiogenesis, the sprouting or intussusception of new vessels from
within pre-existing vessels; vasculogenesis, the de novo synthesis of new vessels from circulating precursor cells; and arteriogenesis, the
positive remodeling and use of pre-existing collateral channels, all represent critical processes requiring the co-ordination of circulating
and tissue–resident progenitor cells during vessel regeneration. (B): Schematic representation of the roles of mesodermal progenitor cell lin-
eages during a co-ordinated, provascular response in vivo. Myeloid hematopoietic progenitor cells secrete angiocrine signals that stimulate
angiogenesis. Circulating and vessel-derived endothelial precursor cell inosculate into vessel walls during vasculogenesis. MSCs differentiate
into wrapping pericytes that stabilize vessels and secrete chemokines that recruit accessory cells (M2 macrophages) implicated in arteriogenesis.
Abbreviations: EPC, endothelial precursor cell; VEGF, vascular endothelial growth factor.

2 Stem Cell Therapy for Critical Limb Ischemia

VC AlphaMed Press 2017 STEM CELLS



(HIF-1a). Under low oxygen, HIF-1a is stabilized and translo-
cated to the nucleus to orchestrate a cascade of gene expression
events including the production of vascular endothelial growth
factor (VEGF) and other potent pro-angiogenic cytokines. Collec-
tively, these signals coordinate a well-characterized series of
events including sprouting, ECM remodeling, endothelial cell
migration, proliferation, and luminogenesis to generate new
capillaries (for review see ref. [11]). In contrast, intussusceptive
angiogenesis is a dynamic intravascular process initiated by
transluminal pillar formation followed by arborization and vas-
cular splitting [12]. Although the molecular control of intussus-
ceptive angiogenesis is less well understood, this process can
dramatically modify the microcirculation by pruning or duplicat-
ing vessels creating an organ specific angioarchitecture. Highly
studied in the context of tissue ischemia and tumor biology
[13], angiogenesis is best envisioned as a dynamic process of
microvessel advancement and regression to increase capillary
density.

Post-natal vasculogenesis is described as de novo synthe-
sis of new blood vessels formed by the activities of endothe-
lial precursor cells (EPC) (Fig. 1A). Vasculogenesis was thought
to be restricted to the blood islands during embryonic devel-
opment until Asahara et al. first identified circulating EPC,
which homed to areas of ischemia and integrated into vessels
[14]. However, the identity and regenerative potential of EPC
remained controversial for many years [14–17], due to over-
lapping phenotype with circulating angiogenic cells (CAC) of
hematopoietic origin [18]. Yoder et al. first delineated pro-
angiogenic cells of hematopoietic or endothelial lineages using
umbilical cord blood [19]. Non-adherent CAC formed early
outgrowth (4–7 days) colonies under endothelial culture con-
ditions and co-expressed both endothelial cell (EC) surface
markers and the pan-leukocyte marker CD45. CAC have subse-
quently been described as myeloid hematopoietic progenitor
cells (HPCs), or cells of the monocyte lineage that secrete
paracrine factors to support angiogenesis without integrating
into vessels [20–22]. In contrast, adherent endothelial colony
forming cells (ECFC) formed late outgrowth (14–17 days) colo-
nies with cobblestone appearance that did not express CD45
and were clonally distinct from CAC. Circulating ECFCs are
extremely rare in peripheral blood, are highly proliferative in
culture, and are able to inosculate into vessels after trans-
plantation [19]. Thus, ECFCs represent the true building blocks
of blood vessels, and vasculogenesis is mediated by collabora-
tion between circulating CAC and vessel-resident ECFC to
maintain vascular health [23–25].

Arteriogenesis describes positive remodeling of pre-
existing collateral channels into functional arteries forming a
“natural bypass” in the limb (Fig. 1A). Normally, there is little
flow in these high resistance collaterals; however, when a
major artery becomes occluded, flow to collaterals is
increased and arteriogenic remodeling is triggered by
recruited monocytes and macrophages that mediate matrix
restructuring [26], and stabilized by supportive smooth muscle
cells or pericytes that wrap larger diameter vessels. Isolated
from perivascular sights in multiple human tissues, Crisan
et al. [63] first established that CD146-expressing pericytes
fulfilled the criteria defining mesenchymal stem cells (MSCs)
[27]. MSCs differentiate into bone, cartilage, and adipose tis-
sues and are described as potent biofactories that home to
sites of ischemia [28–31], and secrete a broad spectrum of

pro-angiogenic and immunomodulatory factors to support
angiogenic [32] and arteriogenic processes [33]. Thus, MSCs
represent a third progenitor cell lineage that stabilize vessels
and provide secreted cues to support vessel maturation (Fig.
1B).

CELL THERAPY TRIALS FOR CLI: WHAT CAN WE LEARN FROM

THE HISTORICAL PERSPECTIVE?

To date over 50 phase I/II clinical trials have investigated a
variety of cell therapies for patients with PAD. Here, we sum-
marize the results of RCT performed on CLI patients with pain
at rest (Rutherford score 4–6) due to atherosclerosis obliter-
ans (ASO) rather than thromboangiitis obliterans (TAO) or
Buerger’s Disease. To focus on studies with reliable statistical
power that diligently followed patient outcomes, RCT were
only selected if they transplanted >10 patients, and if patient
follow-up was 3 months or longer. Rigorous blinding was also
required in study design because placebo-effect factors pre-
dominantly in cell therapy trials [34]. For a systematic review,
and meta-analyses of RCTs and non-randomized trials please
refer to Rigato et al., 2017 [35]. The majority of trials used
unselected MNC harvested from autologous bone marrow
(BM) or from peripheral blood (PB) after G-CSF-stimulated
mobilization. In addition, a variety of more homogenous cell
types have been studied, including BM-derived cells CD341

cells, tissue repair monocytes (CD141/CD451), progenitor cells
with high aldehyde dehydrogenase (ALDH)-activity, or culture-
expanded MSC from autologous or allogeneic BM. Throughout
these studies, therapeutic details such as patient selection,
cell dosage, and delivery modalities have continued to evolve
(Table 1).

INTRA-MUSCULAR TRANSPLANTATION OF BM-

OR PB-DERIVED MNC

The landmark Therapeutic Angiogenesis by Cell Transplanta-
tion (TACT) trial was the first study to demonstrate that intra-
muscular (IM) transplantation of autologous BM MNC into
patients with bilateral CLI could improve ABI and tissue oxy-
gen saturation (TcPo2) compared with autologous PB MNC
administered to the contralateral leg [36]. Although the TACT
trial did not report amputation rates, a critical parameter of
treatment success, follow-up studies by Matoba et al., have
shown improved resting pain, pain-free walking time, and
ulcer healing at 3-years post-transplantation [37]. Subsequent
studies from independent groups collectively established
safety and bioactivity with BM MNC showing consistently
improved ABI scores, pain-free walking, wound healing, and
Rutherford scores when compared with placebo [38–40].
However, overall clinical benefit was considered modest,
because with exception of Prochazka et al., the primary end-
point of limb amputation was not significantly improved [38].
Huang et al., and Ozturk et al., reported autologous MNC
from G-CSF-mobilized PB also improved ABI and rest pain
compared with placebo [44]. Cell harvesting was less invasive
and cell numbers accrued were increased compared with BM
aspirate, but again amputation rates were similar to placebo
[45, 46] (Table 1).
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INTRA-ARTERIAL TRANSPLANTATION OF BM-DERIVED MNC

Preclinical cell tracking studies consistently demonstrated only
transient engraftment after IM injection, with poor MNC sur-
vival and retention in ischemic tissue and little integration
into host vasculature [21, 53–55]. Thus, it was postulated that
after intra-arterial (IA) delivery, cells would better distribute
into zones with sufficient oxygen to prolong beneficial pro-
angiogenic function. The PROVASA trial was the first random-
ized, placebo-controlled trial investigating IA-injection of BM
MNC [41], and showed dose-dependent ulcer healing and
improved rest pain compared with placebo. Unfortunately,
limb salvage did not differ between groups. Recently, the
JUVENTAS trial, performed in Utrecht, the Netherlands, and
powered with 160 patients, also concluded that IA infusion of
autologous MNC did not reduce amputation rates [42]. van
Tongeren et al. combined IA and IM-injection to achieve a
nonsignificant trend toward lowered amputation rates com-
pared with IM-injection alone, suggesting that development
of more specific micro-injection methods, perhaps into genic-
ulate collaterals, was warranted.

IM TRANSPLANTATION OF MARKER-SELECTED CELL TYPES

Multiple preclinical studies have suggested that transfer of
more homogeneous, marker purified cells would increase the
proportion of “active” cells that mediate beneficial effects
leading to improved perfusion in mice after femoral artery
ligation [17, 56–58]. CD341 cell selection seemed to be a
promising approach in the ACT34-CLI (Autologous Cell therapy
using CD34 cells for CLI) trial performed by Losordo et al.,
showing that IM transfer of G-CSF-mobilized CD341 cells at
high dose trended toward lower amputation incidence
(p 5 .054) compared with placebo in a small cohort of
patients [47]. A similar approach used selection based on high
ALDH activity, a protective oxidizing enzyme and highly
expressed in progenitor cells of multiple mesodermal lineages
[53, 59–62]. Notably, ALDHhi cells highly coexpressed CD34,
and accelerated recovery of perfusion in NOD/SCID mice with
femoral artery ligation [53]. In a phase I RCT performed by
Perin et al, IM-transplantation of autologous BM ALDHbr cells
improved ABI and Rutherford scores at 6 months, but did not
improve limb salvage rates compared with BM MNC. Thus,
finding a purified cell population superior to mixed MNC has
proven challenging in clinical trials. The RESTORE-CLI trial
transplanted autologous “tissue repair cells” (TRC), consisting
of a mix of expanded CD901 MSC and CD141 cells. IM-
administration showed a trend toward increase amputation
free survival at 1 year [49]. Finally, the VesCell trial trans-
planted PB-derived, culture-expanded angiogenic cell precur-
sors showing improved amputation rates at 3 months but no
difference at 2 years.

IM TRANSPLANTATION OF BM-DERIVED MSC

Culture-expanded MSCs have also been pursued as a potential
candidate for cell therapy due to beneficial pro-angiogenic
and immunosuppressive secretory functions [51, 52, 63]. BM
MSC injected into the ischemic hind limb of rats lead to
greater perfusion and capillary density increase than BM MNC

injection [64]. Comprehensive proteomic analyses have
revealed that human MSC-derived exosomes contain a broad
spectrum of pro-angiogenic cytokines and micro-RNAs [65],
and we recently identified a subset of MSC with enhanced
pro-angiogenic secretory function [66]. Compared with BM-
derived MNC transplantation in 41 CLI patients with diabetes
[51], autologous transfer of MSC significantly improved ABI,
pain free walking time, and accelerated ulcer healing. Notably,
MSC administration led to significantly increased collateral
vessel scores compared with MNC-injection, indicating a link
between MSC and the induction of arteriogenesis [51]. In a
phase I study of 20 CLI patients, IM-injection of allogeneic
BM MSC increased ABI at 6 months compared with placebo
[52]. Thus, human MSC represent a promising population for
the development of improved, second-generation cell thera-
pies for CLI.

WHAT HAS GONE WRONG AND WHAT CAN WE DO BETTER?

After nearly 2 decades of clinical trials, the field still awaits a
pivotal phase III cell therapy trial that improves limb salvage
in patients with CLI. Invasive revascularization procedures
remain the gold standard option for the treatment for CLI
and cell-therapy is reserved only to those patients who are
ineligible for surgical procedures. Nonetheless, lessons have
been learned and gradual improvements in efficacy have
been achieved. In 2013, a meta-analysis of 10 randomized,
placebo-controlled trials (499 CLI patients) performed by Pee-
ters Weem et al., showed that cell therapy demonstrated sig-
nificant improvements in ABI, resting pain, and pain-free
walking time, but provided no benefit for amputation rates,
amputation free survival compared with placebo controls [67].
Updated in 2017, a similar meta-analysis by Rigatto et al.,
included 19 RCT (837 CLI patients) concluded cell therapy
modestly reduced the risk of amputation by 37%, improved
amputation free survival by 18%, and improved wound heal-
ing by 59% [35]. Finally, in an uncontrolled study, Madaric
et al. [68], analyzed the outcomes of 55 patients transplanted
with BM MNC and concluded that responding patients with
limb salvage and wound healing (33 of 55) at 1 year were
transplanted with significantly higher MNC (p 5 .032) and
CD341 cell dose (p 5 .001) compared with nonresponders
that required limb amputation (22 of 55). Therefore, in con-
trast to cell therapy trials for heart disease [69], the benefits
of cell therapy for CLI are clearly evident, and considering up
to 50% of CLI patients may not be candidates for revasculari-
zation therapies, cell therapy should be considered safe
option for improving ABI, rest pain, and ulcer healing. How-
ever, it is quite remarkable that efficacy of limb salvage in
individual trials has not improved over the past 10 years,
highlighting the need for well-designed RCTs with patient
numbers sufficient to support statistical analyses. Nonethe-
less, we have identified the following six “domains” where
preclinical advancements could improve future cell therapy
trials.

Development of Transplantation Models Relevant to
CLI Patients with Co-morbidities

Since Asahara et al. first discovered circulating EPC in 1997
[14], the regeneration of blood vessels using stem cells has
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undergone intense preclinical investigation [70]. The surgical
hindlimb ischemia model performed by femoral artery ligation
in immunodeficient mice has been used for proof-of-concept
to establish the efficacy of transplanted human cell popula-
tions [71]. Cells were usually administered by intravenous or
multiple IM injections proximal to the ligation site, blood flow
was monitored noninvasively by laser Doppler perfusion imag-
ing, and vessel formation was quantified in muscle using a
battery of immunohistochemical stains. High-impact, preclini-
cal studies suggesting infused BM MNC or selected CD341

progenitor cells could home to ischemic tissues and improve
perfusion [20, 21, 72–77], generated great excitement and
perhaps prematurely spawned clinical trials. Unfortunately,
acute surgical resection has little resemblance to chronic
occlusion during atherosclerosis. Thus, development of
improved transplantation models that integrate chronic
inflammation, hyperlipidemia, and hyperglycemia comorbities
are needed to permit better evaluation of cellular therapies
before clinical testing.

Stem Cell Exhaustion Impacts Autologous Cell
Regenerative Function in CLI Patients

In end-stage CLI patients, angiogenic, vasculogenic, and arte-
riogenic mechanisms (Fig. 1) may be severely compromised or
in some cases absent. The concept termed “stem cell
exhaustion” is generally defined as the acceleration of cellular
aging and senescence in adult stem cells and is an emerging
concept in preclinical studies associated with ischemic disease
of multiple etiologies [78–84]. Although senescence is a nor-
mal process during chronological aging due to telomere short-
ening, cellular aging can be accelerated by accumulation of
oxidative damage, reducing self-renewal, and inducing prema-
ture differentiation [85]. Chronic atherosclerosis and diabetes
in patients with CLI may impact the vascular regenerative
niche where oxidative stress, chronic inflammation, glucotoxic-
ity, and lipotoxicity culminate in progenitor cell dysfunction
including aberrant proliferation, differentiation, migration,
mobilization, or signaling.

In 2001, Vasa et al. were the first to report that the num-
ber and migratory function of EPC was severely reduced in
patients with coronary artery disease [84]. In landmark
articles published in the New England Journal of Medicine,
Hill et al. reported a strong correlation between the number
of circulating EPC and Framingham risk factor score [86], and
Werner et al., observed increased levels of circulating
CD341KDR1 EPC were associated with reduced risk of death
from cardiovascular causes, and reduced risk of first major
cardiovascular events [83]. Shortly, thereafter, patients with
type 1 diabetes [87], type 2 diabetes [79, 82], and metabolic
syndrome [80] were all reported to have EPC depletion and
impaired function. Atherosclerosis is associated with systemic
inflammation and chronic arterial injury that may overwhelm
the ability of EPC to maintain homeostasis [88]. Similarly, MSC
from patients with atherosclerosis adopt a proinflammatory
secretome via increased secretion of IL-6, IL-8, and MCP-1
reversing the normally immunosuppressive nature of MSC
[89]. Unfortunately, for CLI patients with diabetic and athero-
sclerotic co-morbidities, chronic metabolic assault may culmi-
nate in a “perfect storm” causing progenitor cell dysfunction
that impacts downstream progeny (Fig. 2). As a result, trials
transplanting autologous cells to treat CLI may have

transferred cells with compromised function. Although HLA-
matching will be required, the use of allogeneic cells from
healthy BM or UCB may provide alternate sources of progeni-
tor cells less burdened by chronic comorbidities.

Selection of Patient Populations Suitable for Cell
Therapy

It is well defined that CLI has several etiologies and ASO
patients comprise the majority of the CLI patients [90]. BM
cells from CLI patients with atherosclerosis demonstrate
impaired function and reduced EPC numbers compared with
CLI patients with Buerger’s Disease [84, 91]. Thus, autologous
cell therapy may be more favorable in CLI patients with
Buerger’s disease that were excluded from many of the trials
in Table 1. Also worth mentioning is the degree of ischemia
in patients considered for cellular therapy. Walter et al. dem-
onstrated that patients with Rutherford stage 6 did not
respond to cellular therapy compared with patients with
Rutherford stage 4–5 [41]. Autologous approaches may be
more useful at earlier stages of disease pathology such as in
intermittent claudication patients [92], where the delivery of
cells may have a greater effect due to the preservation of
regenerative potential by both transplanted and recipient-
derived cells.

There also exists great heterogeneity between PAD
patients in the ability to mediate meaningful vascular repair.
This is most evident when assessing arteriogenic bypass
mechanisms. Patients with similar severity of arterial occlusion
can demonstrate dramatically different impairments in perfu-
sion. For example, a patient with near full occlusion of the
superficial femoral artery may appear asymptomatic due to
robust generation of geniculate collaterals that connect the
deep femoral artery with the popliteal artery, thus providing a
natural bypass around the occlusion. While microvascular
remodeling by angiogenesis may be sufficient to improve per-
fusion in the small tissue volume of a mouse hindlimb, the
much larger volume of the human leg may require larger con-
duits to provide adequate flow. Therefore, development of
methods to therapeutically target arteriogenic processes is
warranted and more attention should be paid to understand-
ing the mechanisms governing this understudied process in
preclinical studies.

Purification, Expansion, and Cotransplantation of Cells
with Complementary Functions

After >15 years of investigation, it remains unclear which cell
type and source yields superior benefit on a per cell basis.
Cells have traditionally been obtained from either BM or G-
CSF mobilized PB (Table 1). In any cell therapy application, it
is essential to identify “active” cells that mediate beneficial
effects [19, 93, 94]. Early trials for CLI used unpurified, het-
erogeneous cell preparations with low representation of
“active” cells with documented pro-angiogenic functions [36,
38, 95, 96]. MNC contain an extremely low frequency (<1%)
of “active” cells. The frequency of pro-angiogenic HPC in
human BM is � 1 in 10,000 MNC, whereas the frequency of
nonhematopoietic MSC or EPC is estimated at 1 in 106 to 107

MNC or fewer. MNC can be efficiently purified by CD34 [47]
or CD133 [53] expression, and ALDH-activity also select for
progenitor cells with enhanced vasculogenic functions [60].
Preclinical studies aimed at understanding how these cell
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types can be combined to formulate a niche for perfused
neovessel formation (Fig. 1), remains the key to translating
the potential of stem cells into a curative therapy for CLI.

Pro-angiogenic progenitor cells are rare in human BM
and UCB and large cell numbers will be required for human
therapy. Over the past 10 years, the field has developed clin-
ically applicable (serum-free and xeno-free) expansion media
for HPC, EPC, and MSC using defined conditions. Bbioengin-
eering approaches such as “batch-fed” automated systems
and large-scale bioreactors have emerged for the safe,
robust, and cost-efficient expansion of lineage-restricted pro-
genitor cells [97, 98]. However, extended culture is known to
negatively impact regenerative function. Using the estab-
lished principle that ALDH-expression decreases as cells
mature [59, 99], we have used high ALDH-activity to reselect
subsets from expanded lineages with enhanced pro-vascular
functions [66]. A similar strategy can be employed using cell
surface marker expression for CD34, CD133, and CD146, rep-
resenting HPC, EPC, and MSC, respectively. Concurrently,
improved genomic and proteomic screening technologies
may be used to identify critical pathways required to pro-
mote transplanted cell cross-talk and improve pro-vascular
function. Finally, ex vivo expansion also provides a “window
of opportunity” to modulate stem cell function using phar-
macological agents [100]. Indeed, CLI-mediated dysfunction
in MSC can be reverted by the culturing process [101],

and augmenting the potency of cells during expansion
represents one potential strategy to rejuvenate cells before
transplantation [99].

Extracellular Vesicles Contain Potent Pro-Angiogenic
Signaling Content

During the past decade, extracellular vesicles (EVs), including
exosomes and microvesicles, have emerged as important
mediators of cell-cell communication in vascular development,
growth, and maturation [102]. EVs contain a number of bioac-
tive molecules including, peptides, proteins, lipids, and nucleic
acids (micro-RNAs and mRNA) that act as regulators of EC
function to promote or inhibit angiogenesis in a paracrine and
endocrine fashion. Although EVs are produced by many cell
types, EVs from multiple progenitor cell lineages are released
into the peripheral circulation and target distant sites with
potent pro-angiogenic stimuli. Mathiyalagan et al. have
recently shown that human CD341 cell-derived exosomes
injected into the ischemic hindlimb of mice improved limb
perfusion via EC uptake of miRNA-126-3p that suppressed
expression of the sprouty-family gene, SPRED1, and simulta-
neously upregulated VEGF, ANGF1, ANG2, and MMP9 expres-
sion [103]. ECFC-derived EVs incorporate into ECs via
interaction with a4 and b1 integrins, and stimulate angiogen-
esis via delivery of mRNA associated with eNOS production
and PI3K/AKT pathway [104]. Similarly, MSC-derived exosomes

Figure 2. Pro-vascular progenitor cell “exhaustion” in patients with critical limb ischemia. Human bone marrow is a rich reservoir of
progenitor cells that co-ordinate blood vessel repair. Myeloid hematopoietic progenitor cells secrete angiocrine signals that stimulate
angiogenesis. Circulating and vessel-resident endothelial precursor cell act as the building blocks of blood vessels and inosculate into
the vessel wall during vasculogenesis. Multipotent stromal cells (aka mesenchymal stem cells) generate vessel wrapping pericytes and
smooth muscle cells that stabilize newly formed vessels and secrete trophic factors that recruit accessory cells (M2 macrophages) impli-
cated in activation of arteriogenic remodeling and collateral vessel perfusion. Unfortunately, in critical limb ischemia patients with dia-
betic with atherosclerotic co-morbidities, chronic exposure to oxidative stress, systemic inflammation, lipotoxicity, and glucotoxicity
result in regenerative cell depletion and dysfunction within the progenitors cells that formulate a vascular regenerative niche. Abbrevia-
tions: EC, endothelial cell; EPC, endothelial precursor cell; HPC, hematopoietic progenitor cell; MSC, mesenchymal stem cell.
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modify EC function via the transfer of platelet-derived growth
factor, fibroblast growth factor, EGF, VEGF, Wnt-pathway, and
nuclear factor kappa-light-chain-enhancer of activated B cells
proteins [65], and via the inhibitory actions of miRNA-31 sup-
pressing HIF-1a [105]. Thus, the therapeutic application of
MV-injection is drawing increasing interest for the treatment
of CLI.

Refinement of Cell Delivery Technologies to Improve

Cell Survival and Function

A critical caveat with any cell therapy trial is the lack of
persistence of injected cells in the damaged or diseased tis-
sue. Preclinical survival data in immunodeficient animals
suggest most human cell lineages only engraft transiently
(<7 days) [53, 60], truncating the duration of the regenera-
tive stimulus. As shown in Table 1, most of the trials have
used direct IM or IA injection, and both methods are con-
sidered sub-optimal since cells might not reach their target
site due to compromised vasculature [106]. In addition to
studying the site of injected cells, the dosage and fre-
quency of cell injection cells needs further investigation. To
date, there are few studies that have addressed cell dosage
in humans, and this work will be necessary to optimize
the delivery of marker-selected or expanded stem cell
populations.

To address the cell survival after transplantation, recent
progress has been made using 3D, biodegradable, implant-
able scaffolds designed to provide anchorage for cells and to
support paracrine delivery of pro-regenerative factors into
the ischemic region. Decellularized bioscaffolds have gener-
ated great interest due to their potential to enhance regen-
eration [107–109], by creating off-the-shelf scaffolds
enriched in structural ECM components [107], which can
support cell attachment, infiltration, and constructive tissue
remodeling in vitro and in vivo [110–112]. Importantly, in
vivo studies have demonstrated that human decellularized
adipose tissue scaffolds provided a constructive microenvi-
ronment for angiogenesis with no evidence of a negative
host response following implantation into immune compe-
tent Wistar rats [113]. In fact, these constructs promote the
recruitment of endogenous, proregenerative M2 macro-
phages in scaffolds preseeded with MSC [114]. These emerg-
ing delivery modalities may some day represent a novel
paradigm shift in the effectiveness of future cell therapies
for CLI.

CONCLUSION

It remains a challenging era for the clinical development of
cell therapies for CLI. For the first time, we have the capacity
to generate all the cell types required to model complete ves-
sel formation from exogenous allogeneic or autologous sour-
ces using combinatorial delivery of vessel-forming EPC, with
pro-angiogenic HPC, and vessel-stabilizing MSC, within
implantable decellularized matricies. Unfortunately, morbidity
and mortality from CLI remains unacceptably high, underscor-
ing the need for translational studies to carefully evaluate
emerging concepts and technologies and expedite the devel-
opment of cell therapies for CLI.Ta
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